Physical Review Research (Jul 2024)

Periodic quantum Rabi model with cold atoms at deep strong coupling

  • Geram Hunanyan,
  • Johannes Koch,
  • Stefanie Moll,
  • Enrique Rico,
  • Enrique Solano,
  • Martin Weitz

DOI
https://doi.org/10.1103/PhysRevResearch.6.033023
Journal volume & issue
Vol. 6, no. 3
p. 033023

Abstract

Read online Read online

The quantum Rabi model describes the coupling of a two-state system to a bosonic field mode. Recent theoretical work has pointed out that a generalized periodic version of this model, which maps onto Hamiltonians applicable in superconducting qubit settings, can be quantum simulated with cold trapped atoms. Here, we experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong-coupling regime. The two-state system is represented by two Bloch bands of cold atoms in an optical lattice, and the bosonic mode by oscillations in a superimposed optical dipole trap potential. The observed dynamics beyond the usual quantum Rabi physics becomes relevant when the edge of the Brillouin zone is reached, and evidence for collapse and revival of the initial state is revealed at extreme coupling conditions.