PeerJ (Sep 2018)

High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin

  • Thomas Mattern,
  • Michael D. McPherson,
  • Ursula Ellenberg,
  • Yolanda van Heezik,
  • Philipp J. Seddon

DOI
https://doi.org/10.7717/peerj.5459
Journal volume & issue
Vol. 6
p. e5459

Abstract

Read online Read online

Camera loggers are increasingly used to examine behavioural aspects of free-ranging animals. However, often video loggers are deployed with a focus on specific behavioural traits utilizing small cameras with a limited field of view, poor light performance and video quality. Yet rapid developments in consumer electronics provide new devices with much improved visual data allowing a wider scope for studies employing this novel methodology. We developed a camera logger that records full HD video through a wide-angle lens, providing high resolution footage with a greater field of view than other camera loggers. The main goal was to assess the suitability of this type of camera for the analysis of various aspects of the foraging ecology of a marine predator, the yellow-eyed penguin in New Zealand. Frame-by-frame analysis allowed accurate timing of prey pursuits and time spent over certain seafloor types. The recorded video footage showed that prey species were associated with certain seafloor types, revealed different predator evasion strategies by benthic fishes, and highlighted varying energetic consequences for penguins pursuing certain types of prey. Other aspects that could be analysed were the timing of breathing intervals between dives and observe exhalation events during prey pursuits, a previously undescribed behaviour. Screen overlays facilitated analysis of flipper angles and beat frequencies throughout various stages of the dive cycle. Flipper movement analysis confirmed decreasing effort during descent phases as the bird gained depth, and that ascent was principally passive. Breathing episodes between dives were short (<1 s) while the majority of the time was devoted to subsurface scanning with a submerged head. Video data recorded on free-ranging animals not only provide a wealth of information recorded from a single deployment but also necessitate new approaches with regards to analysis of visual data. Here, we demonstrate the diversity of information that can be gleaned from video logger data, if devices with high video resolution and wide field of view are utilized.

Keywords