Recent progress in gel polymer electrolyte for lithium metal batteries
Changxing Han,
Xiong Shui,
Guansheng Chen,
Gaojie Xu,
Jun Ma,
Shanmu Dong,
Shitao Wang,
Xinhong Zhou,
Zili Cui,
Lixin Qiao,
Guanglei Cui
Affiliations
Changxing Han
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
Xiong Shui
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology No. 53 Zhengzhou Road, Qingdao 266042, China
Guansheng Chen
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology No. 53 Zhengzhou Road, Qingdao 266042, China
Gaojie Xu
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
Jun Ma
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
Shanmu Dong
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
Shitao Wang
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
Xinhong Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology No. 53 Zhengzhou Road, Qingdao 266042, China
Zili Cui
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Corresponding authors at: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences China.
Lixin Qiao
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Corresponding authors at: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences China.
Guanglei Cui
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Corresponding authors at: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences China.
Lithium metal batteries (LMBs) with high energy density have been deemed as one of the promising alternatives to alleviate the “range anxiety” of current electric vehicles based on traditional lithium-ion batteries. However, LMBs using traditional liquid electrolytes (LEs) are always facing serious lithium dendrite growth and electrolyte leakage issues, which could usually cause serious safety concerns. Solid polymer electrolytes (SPEs) with high mechanical stability could suppress the lithium dendrites to some extent, however, they are suffering from low ionic conductivity and inferior interfacial contact with electrodes. Gel polymer electrolytes (GPEs) combining the advantages of traditional LEs and SPEs could be a promising choice to alleviate above issues. In this review, we systematically summarized and clarified very recent progress of various advanced GPEs for LMBs, which is mainly focusing on the advancement of different polymer matrices used for GPE-based LMBs as well as the development of methodologies for the preparation of GPEs. In addition, we also provide a perspective aiming at inspiring new ideas and directions to design reliable GPEs for advancing the performance of LMBs and boosting their practical application.