Current Directions in Biomedical Engineering (Sep 2018)

Soft tissue volume augmentation in the oral cavity with a collagen-based 3D matrix with orientated open pore structure

  • Damink Leon Olde,
  • Heschel Ingo,
  • Leemhuis Hans,
  • Tortorici Martina,
  • Wessing Bastian

DOI
https://doi.org/10.1515/cdbme-2018-0058
Journal volume & issue
Vol. 4, no. 1
pp. 237 – 241

Abstract

Read online

In this study, characteristic features of a new regenerative 3D collagen matrix with an orientated open pore structure are studied in-vitro and in-vivo. The noncrosslinked porcine-based resorbable collagen-elastin matrix is designed to provide support during coverage procedures of localized gingival recessions and for local soft tissue augmentation around teeth and implants and is designed to provide an off-the-shelf alternative to autogenous soft tissue grafts. The in-vitro studies show that the mechanical properties (e.g. suture retention, volume recovery after cyclic compression) and the observed active cell migration into the open porous structure of the matrix fulfil essential design requirements. The in-vivo pig animal study shows that the matrix is well integrated into the surrounding tissue and replaced by newly formed autogenous soft tissue without a significant loss in tissue volume. First clinical case series are being performed to further analyse the new 3D matrix in clinical settings.

Keywords