Majallah-i ̒Ulum-i Bāghbānī (Mar 2024)

Effect of Foliar Application of Different Sources of Nano-Chelate Fertilizer (Nitrogen and Potassium) and Chemical Fertilizers (Urea and Potassium Nitrate) on Yield and Oil’s Quantity Attributes of Olive Tree cv. Zard

  • Zohre Rohi Vishekaii,
  • Ali Soleimani,
  • Mahmmod Ghasemnezhad,
  • Akbar Hasani

DOI
https://doi.org/10.22067/jhs.2023.81601.1246
Journal volume & issue
Vol. 38, no. 1
pp. 147 – 164

Abstract

Read online

Introduction Olive tree, with a thousand years of cultivation history, is one of the most important horticultural crops in Iran and has always played an important economical role for orchardists. In olive orchards traits such as an increased formation of incomplete flowers, low yield of fruits and oil are often found as major problems. It should be noted that these traits are affected by numerous environmental and management factors from which the nutrition status is one of the most important ones. Proper nutrition plays an important role in both olive fruit and oil yield. There is a wide range of fertilizer compounds with different formulas and efficiencies available in the world market, among which nano-products are becoming increasingly popular. However, there is limited information on their efficacy in different plant species. Materials and MethodsIn order to evaluate the impact of fertilizers on olive cultivation, a research was conducted during two successive years from 2019 to 2020 in a commercial orchard on 15 year old olive tree cv. ‘Zard’, in Manjil city of Guilan province. Foliar application included five treatments using two types of fertilizers; nano (nano-chelated nitrogen and potassium: nano-NK) and chemical fertilizers (urea and potassium nitrate; NK). Treatments involved application of two concentrations from each fertilizers sources; 1.02g and 0.81g (nano-N1K1 and N1K1), 1.36 g and 1.08 g (nano-N2K2 and N2K2) of pure nitrogen and potassium, respectively. Foliar application was conducted in four stages bud-swelling, before blooming, pit hardening and shortly after harvest of table olive. Spraying with water was considered as the control. The nano-chelated fertilizers were obtained from Khazra Company, Teheran, Iran (http://en.khazra.ir). Spraying with water was considered as control. The experiment was performed in a randomized block design with three replications. The measurement of leaf nutrient status and its chlorophyll and carbohydrate contents were carried out at two times each growing season; in August (during pit hardening stage) and October (shortly after the harvest of table olive). At the green ripening stage, fruits were collected and weighted to determine fruit yield. At the end of the experiment quantity and quality traits of oil were measured. Results and Discussion The results showed that the trees under N2K2 treatment had the highest yield. In terms of mineral content, both forms of fertilizers increased the concentration of nitrogen and potassium leaf elements compared to the control trees. Chlorophyll content was affected by nano-N1K1 foliar application and carbohydrate content was affected by nano-N1K1 in the pit hardening stage and nano-N2K2 in shortly after the harvest of table olive. Nano-N1K1 treatment with the lower crop load not only increased oil content but also improved quality characteristics of olive oil (free fatty acids, peroxide value, specific ultraviolet absorbance K232, K270 and contents of pigments), total phenol content, antioxidant capacity and fatty acid composition. Generally, the results showed that olive trees responded well to fertilizer feeding. These trees produced better crop and higher quality oil in comparison with control trees. According to the results, fruit yield is better under urea and potassium nitrate treatment, and the quality of olive oil is more stable after nano-chelated nitrogen and potassium foliar application. It seems that the reason for the high amount of fruit yield with N2K2 in comparison to the slow-release property of nano-fertilizers is that using nitrogen and potassium in the form of ordinary chemical fertilizer regulates the biosynthesis, conversion and rapid translocation of assimilates and mineral elements into reproductive structures, which resulted in soaring yield. We assumed that nano-N1K1 foliar spray in the pit hardening stage and shortly after the fruit harvest for table olive might export the assimilation into the fruit to fulfill cell metabolism requirements for oil synthesis. Conclusion The current findings indicated that two of four treatments, i.e. nano-N1K1 and N2K2, could be more effective on olive trees in terms of general fruit and oil attributes. It was remarkable that nano treatment with a lower concentration could provide adequate beneficial effects on quality characteristics of olive oil and is in line with good management strategies regarding the preservation of the environment. To the best of our knowledge, the current work is the first report considering the application of nano-chelated nitrogen and potassium and their is use as a foliar application on olive trees. Additional studies would be necessary to further optimize the concentration and timing of the applications with these new formulations.

Keywords