Laryngoscope Investigative Otolaryngology (Aug 2023)

Amprenavir inhibits pepsin‐mediated laryngeal epithelial disruption and E‐cadherin cleavage in vitro

  • Tina L. Samuels,
  • Simon Blaine‐Sauer,
  • Ke Yan,
  • Nikki Johnston

DOI
https://doi.org/10.1002/lio2.1102
Journal volume & issue
Vol. 8, no. 4
pp. 953 – 962

Abstract

Read online

Abstract Background Laryngopharyngeal reflux (LPR) causes chronic cough, throat clearing, hoarseness, and dysphagia and can promote laryngeal carcinogenesis. More than 20% of the US population suffers from LPR and there is no effective medical therapy. Pepsin is a predominant source of damage during LPR which disrupts laryngeal barrier function potentially via E‐cadherin cleavage proteolysis and downstream matrix metalloproteinase (MMP) dysregulation. Fosamprenavir (FDA‐approved HIV therapeutic and prodrug of amprenavir) is a pepsin‐inhibiting LPR therapeutic candidate shown to rescue damage in an LPR mouse model. This study aimed to examine amprenavir protection against laryngeal monolayer disruption and related E‐cadherin proteolysis and MMP dysregulation in vitro. Methods Laryngeal (TVC HPV) cells were exposed to buffered saline, pH 7.4 or pH 4 ± 1 mg/mL pepsin ± amprenavir (10–60 min). Analysis was performed by microscopy, Western blot, and real time polymerase chain reaction (qPCR). Results Amprenavir (1 μM) rescued pepsin acid‐mediated cell dissociation (p < .05). Pepsin acid caused E‐cadherin cleavage indicative of regulated intramembrane proteolysis (RIP) and increased MMP‐1,3,7,9,14 24‐h postexposure (p < .05). Acid alone did not cause cell dissociation or E‐cadherin cleavage. Amprenavir (10 μM) protected against E‐cadherin cleavage and MMP‐1,9,14 induction (p < .05). Conclusions Amprenavir, at serum concentrations achievable provided the manufacturer's recommended dose of fosamprenavir for HIV, protects against pepsin‐mediated cell dissociation, E‐cadherin cleavage, and MMP dysregulation thought to contribute to barrier dysfunction and related symptoms during LPR. Fosamprenavir to amprenavir conversion by laryngeal epithelia, serum and saliva, and relative drug efficacies in an LPR mouse model are under investigation to inform development of inhaled formulations for LPR.

Keywords