Nanophotonics (Aug 2021)
Low-threshold and narrow-linewidth perovskite microlasers pumped by a localized waveguide source
Abstract
For the widely used vertically pumped (VP) method with a free-space beam, very little pump power is absorbed by the gain materials in microlasers because of the large spatial mismatch of areas between laser modes and free-space pump beams together with small thicknesses of gain materials, resulting in a high pump power threshold. Here, an in-plane-waveguide-pump (IPWP) method with a localized waveguide source is proposed to reduce pump power threshold of perovskite microlasers. Owing to reduced spatial mismatch of areas between laser modes and localized waveguide sources as well as increased absorption distances, the pump power threshold of the IPWP method is decreased to approximately 6% that of the VP method. Moreover, under the same multiple of the pump power threshold, the laser linewidth in the IPWP method is narrowed to approximately 70% that in the VP method. By using the IPWP method, selective pumping two adjacent (separation 2 or 3 μm) parallel-located perovskite microlasers is experimentally demonstrated, and no crosstalk is observed. This IPWP method may have applications in low-energy and high-density microlasers and photonic integrated circuits.
Keywords