JPhys Energy (Jan 2024)
2024 roadmap for sustainable batteries
- Magda Titirici,
- Patrik Johansson,
- Maria Crespo Ribadeneyra,
- Heather Au,
- Alessandro Innocenti,
- Stefano Passerini,
- Evi Petavratzi,
- Paul Lusty,
- Annika Ahlberg Tidblad,
- Andrew J Naylor,
- Reza Younesi,
- Yvonne A Chart,
- Jack Aspinall,
- Mauro Pasta,
- Joseba Orive,
- Lakshmipriya Musuvadhi Babulal,
- Marine Reynaud,
- Kenneth G Latham,
- Tomooki Hosaka,
- Shinichi Komaba,
- Jan Bitenc,
- Alexandre Ponrouch,
- Heng Zhang,
- Michel Armand,
- Robert Kerr,
- Patrick C Howlett,
- Maria Forsyth,
- John Brown,
- Alexis Grimaud,
- Marja Vilkman,
- Kamil Burak Dermenci,
- Seyedabolfazl Mousavihashemi,
- Maitane Berecibar,
- Jean E Marshall,
- Con Robert McElroy,
- Emma Kendrick,
- Tayeba Safdar,
- Chun Huang,
- Franco M Zanotto,
- Javier F Troncoso,
- Diana Zapata Dominguez,
- Mohammed Alabdali,
- Utkarsh Vijay,
- Alejandro A Franco,
- Sivaraj Pazhaniswamy,
- Patrick S Grant,
- Stiven López Guzman,
- Marcus Fehse,
- Montserrat Galceran,
- Néstor Antuñano
Affiliations
- Magda Titirici
- ORCiD
- Department of Chemical Engineering, Imperial College London , London, United Kingdom
- Patrik Johansson
- ORCiD
- Department of Physics, Chalmers University of Technology , Göteborg, Sweden; ALISTORE-ERI, CNRS FR , 3104, Hub de l’Energie, Amiens Cedex, France
- Maria Crespo Ribadeneyra
- School of Engineering and Materials Science, Queen Mary University of London , London, United Kingdom
- Heather Au
- ORCiD
- Department of Chemical Engineering, Imperial College London , London, United Kingdom
- Alessandro Innocenti
- ORCiD
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage , Ulm, Germany; Karlsruhe Institute of Technology (KIT) , Karlsruhe, Germany
- Stefano Passerini
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage , Ulm, Germany; Karlsruhe Institute of Technology (KIT) , Karlsruhe, Germany; Department of Chemistry, Sapienza University of Rome , Rome, Italy
- Evi Petavratzi
- ORCiD
- Fastmarkets , 8 Bouverie Street, London EC4Y 8AX, United Kingdom
- Paul Lusty
- Fastmarkets , 8 Bouverie Street, London EC4Y 8AX, United Kingdom
- Annika Ahlberg Tidblad
- Volvo Car Corporation , Gothenburg, Sweden; Department of Chemistry—Ångström Laboratory, Uppsala University , Uppsala, Sweden
- Andrew J Naylor
- ORCiD
- Department of Chemistry—Ångström Laboratory, Uppsala University , Uppsala, Sweden
- Reza Younesi
- ORCiD
- Department of Chemistry—Ångström Laboratory, Uppsala University , Uppsala, Sweden
- Yvonne A Chart
- ORCiD
- Department of Materials, University of Oxford , Oxford, United Kingdom; The Faraday Institution, Harwell Campus , Didcot, United Kingdom
- Jack Aspinall
- Department of Materials, University of Oxford , Oxford, United Kingdom; The Faraday Institution, Harwell Campus , Didcot, United Kingdom
- Mauro Pasta
- ORCiD
- Department of Materials, University of Oxford , Oxford, United Kingdom; The Faraday Institution, Harwell Campus , Didcot, United Kingdom
- Joseba Orive
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Lakshmipriya Musuvadhi Babulal
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Marine Reynaud
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Kenneth G Latham
- Department of Chemical Engineering, Imperial College London , London, United Kingdom
- Tomooki Hosaka
- Department of Applied Chemistry, Tokyo University of Science , Shinjuku, Tokyo, Japan
- Shinichi Komaba
- Department of Applied Chemistry, Tokyo University of Science , Shinjuku, Tokyo, Japan
- Jan Bitenc
- ORCiD
- National Institute of Chemistry , Ljubljana, Slovenia
- Alexandre Ponrouch
- ORCiD
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Catalonia, Spain
- Heng Zhang
- ORCiD
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, People’s Republic of China
- Michel Armand
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Robert Kerr
- Deakin University, Institute for Frontier Materials , Burwood, Victoria, Australia
- Patrick C Howlett
- Deakin University, Institute for Frontier Materials , Burwood, Victoria, Australia
- Maria Forsyth
- ORCiD
- Deakin University, Institute for Frontier Materials , Burwood, Victoria, Australia
- John Brown
- ORCiD
- Chimie du Solide et de l’Energie (CSE), Collège de France , Paris, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS , Amiens, France; ALISTORE-ERI, CNRS FR , 3104, Hub de l’Energie, Amiens Cedex, France
- Alexis Grimaud
- Chimie du Solide et de l’Energie (CSE), Collège de France , Paris, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS , Amiens, France; Department of Chemistry, Boston College , Boston, Massachusetts, United States of America
- Marja Vilkman
- ORCiD
- VTT Technical Research Centre of Finland , Espoo, Finland
- Kamil Burak Dermenci
- ORCiD
- Electromobility Research Centre, Vrije Universiteit Brussel , Brussels, Belgium
- Seyedabolfazl Mousavihashemi
- ORCiD
- VTT Technical Research Centre of Finland , Espoo, Finland
- Maitane Berecibar
- ORCiD
- Electromobility Research Centre, Vrije Universiteit Brussel , Brussels, Belgium
- Jean E Marshall
- ORCiD
- WMG, International Manufacturing Centre, University of Warwick , Coventry, United Kingdom
- Con Robert McElroy
- ORCiD
- School of Chemistry, University of Lincoln, Brayford Pool Campus , Lincoln, United Kingdom
- Emma Kendrick
- ORCiD
- College of Engineering and Physical Sciences, University of Birmingham , Birmingham, United Kingdom
- Tayeba Safdar
- The Faraday Institution, Harwell Campus , Didcot, United Kingdom; Department of Materials, Imperial College London , London, United Kingdom
- Chun Huang
- ORCiD
- The Faraday Institution, Harwell Campus , Didcot, United Kingdom; Department of Materials, Imperial College London , London, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory , Didcot, United Kingdom
- Franco M Zanotto
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS , Hub de l’Energie, Amiens Cedex 3459, France
- Javier F Troncoso
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS , Hub de l’Energie, Amiens Cedex 3459, France
- Diana Zapata Dominguez
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS , Hub de l’Energie, Amiens Cedex 3459, France
- Mohammed Alabdali
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France
- Utkarsh Vijay
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France; ALISTORE-ERI, CNRS FR , 3104, Hub de l’Energie, Amiens Cedex, France
- Alejandro A Franco
- ORCiD
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne , Hub de l’Energie, Amiens Cedex, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS , Hub de l’Energie, Amiens Cedex 3459, France; ALISTORE-ERI, CNRS FR , 3104, Hub de l’Energie, Amiens Cedex, France; Institut Universitaire de France , 103 boulevard Saint Michel, 75005 Paris, France
- Sivaraj Pazhaniswamy
- ORCiD
- Department of Materials, University of Oxford , Parks Road, Oxford OX1 3PH, United Kingdom
- Patrick S Grant
- ORCiD
- Department of Materials, University of Oxford , Parks Road, Oxford OX1 3PH, United Kingdom
- Stiven López Guzman
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain; Chemical and Environmental Engineering Department, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU) , Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain
- Marcus Fehse
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Montserrat Galceran
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- Néstor Antuñano
- ORCiD
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava , Vitoria-Gasteiz, Spain
- DOI
- https://doi.org/10.1088/2515-7655/ad6bc0
- Journal volume & issue
-
Vol. 6,
no. 4
p. 041502
Abstract
Modern batteries are highly complex devices. The cells contain many components—which in turn all have many variations, both in terms of chemistry and physical properties. A few examples: the active materials making the electrodes are coated on current collectors using solvents, binders and additives; the multicomponent electrolyte, contains salts, solvents, and additives; the electrolyte can also be a solid ceramic, polymer or a glass material; batteries also contain a separator, which can be made of glass fibres, polymeric, ceramic, composite, etc. Moving up in scale all these components are assembled in cells of different formats and geometries, coin cells and Swagelok cells for funamental testing and understanding, and pouch, prismatic and cylindrical cells for application. Given this complexity dictated by so many components and variations, there is no wonder that addressing the crucial issue of true sustainability is an extremely challenging task. How can we make sure that each component is sustainable? How can the performance can be delivered using more sustainable battery components? What actions do we need to take to address battery sustainability properly? How do we actually qualify and quantify the sustainability in the best way possible? And perhaps most importantly; how can we all work—academia and battery industry together—to enable the latter to manufacture more sustainable batteries for a truly cleaner future? This Roadmap assembles views from experts from academia, industry, research institutes, and other organisations on how we could and should achieve a more sustainable battery future. The palette has many colours: it discusses the very definition of a sustainable battery, the need for diversification beyond lithium-ion batteries (LIBs), the importance of sustainability assessments, the threat of scarcity of raw materials and the possible impact on future manufacturing of LIBs, the possibility of more sustainable cells by electrode and electrolyte chemistries as well as manufacturing, the important role of new battery chemistries, the crucial role of AI and automation in the discovery of the truly sustainable batteries of the future and the importance of developimg a circular battery economy.
Keywords