Stress Biology (Apr 2024)

The complex transcriptional regulation of heat stress response in maize

  • Mingxiu Ruan,
  • Heng Zhao,
  • Yujing Wen,
  • Hao Chen,
  • Feng He,
  • Xingbo Hou,
  • Xiaoqin Song,
  • Haiyang Jiang,
  • Yong-Ling Ruan,
  • Leiming Wu

DOI
https://doi.org/10.1007/s44154-024-00165-x
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 14

Abstract

Read online

Abstract As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.

Keywords