PLoS Genetics (Feb 2021)

Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription.

  • Shih-Ying Tsai,
  • Fu Huang

DOI
https://doi.org/10.1371/journal.pgen.1009349
Journal volume & issue
Vol. 17, no. 2
p. e1009349

Abstract

Read online

The piRNA pathway is a highly conserved mechanism to repress transposon activation in the germline in Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lack conventional promoters, and utilize heterochromatin- and HP1D/Rhino-dependent noncanonical mechanisms for transcription. However, information regarding the transcriptional regulation of piRNA clusters is limited. Here, we report that the Drosophila acetyltransferase Enok, which can activate transcription by acetylating H3K23, is critical for piRNA production from 54% of piRNA clusters including 42AB, the major piRNA source. Surprisingly, we found that Enok not only promotes rhino expression by acetylating H3K23, but also directly enhances transcription of piRNA clusters by facilitating Rhino recruitment. Taken together, our study provides novel insights into the regulation of noncanonical transcription at piRNA clusters and transposon silencing.