PLoS ONE (Jan 2014)

Proteomic analysis of nasal epithelial cells from cystic fibrosis patients.

  • Ludovic Jeanson,
  • Ida Chiara Guerrera,
  • Jean-François Papon,
  • Cerina Chhuon,
  • Patricia Zadigue,
  • Virginie Prulière-Escabasse,
  • Serge Amselem,
  • Estelle Escudier,
  • André Coste,
  • Aleksander Edelman

DOI
https://doi.org/10.1371/journal.pone.0108671
Journal volume & issue
Vol. 9, no. 9
p. e108671

Abstract

Read online

The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.