Italian Journal of Agronomy (May 2012)

Biochar from swine manure solids: influence on carbon sequestration and Olsen phosphorus and mineral nitrogen dynamics in soil with and without digestate incorporation

  • Rosa Marchetti,
  • Fabio Castelli,
  • Anna Orsi,
  • Lidia Sghedoni,
  • Davide Bochicchio

DOI
https://doi.org/10.4081/ija.2012.e26
Journal volume & issue
Vol. 7, no. 2

Abstract

Read online

Interest in biochar (BC) has grown dramatically in recent years, due mainly to the fact that its incorporation into soil reportedly enhances carbon sequestration and fertility. Currently, BC types most under investigation are those obtained from organic matter (OM) of plant origin. As great amounts of manure solids are expected to become available in the near future, thanks to the development of technologies for the separation of the solid fraction of animal effluents, processing of manure solids for BC production seems an interesting possibility for the recycling of OM of high nutrient value. The aim of this study was to investigate carbon (C) sequestration and nutrient dynamics in soil amended with BC from dried swine manure solids. The experiment was carried out in laboratory microcosms on a silty clay soil. The effect on nutrient dynamics of interaction between BC and fresh digestate obtained from a biogas plant was also investigated to test the hypothesis that BC can retain nutrients. A comparison was made of the following treatments: soil amended with swine manure solids (LC), soil amended with charred swine manure solids (LT), soil amended with wood chip (CC), soil amended with charred wood chip (CT), soil with no amendment as control (Cs), each one of them with and without incorporation of digestate (D) for a total of 10 treatments. Biochar was obtained by treating OM (wood chip or swine manure) with moisture content of less than 10% at 420°C in anoxic conditions. The CO2-C release and organic C, available phosphorus (P) (Olsen P, POls) and inorganic (ammonium+nitrate) nitrogen (N) (Nmin) contents at the start and three months after the start of the experiment were measured in the amended and control soils. After three months of incubation at 30°C, the CO2-C emissions from soil with BC (CT and LT, ±D) were the same as those in the control soil (Cs) and were lower than those in the soils with untreated amendments (CC and LC, ±D). The organic C content decreased in CT and LT to a lesser extent than in CC and LC. In soils with D (+D), the CO2-C emissions were equal to or higher than those in soils without (-D). The Nmin content increased in all treatments; the POls content decreased in the +D treatments. The incorporation of BC into soil, by reducing CO2 emissions, actually contributes to C sequestration without modifying N availability for crops. For a given N content, the BC from swine manure solids supplies much more P than the non-treated OM and, therefore, represents an interesting source of P for crops.

Keywords