Scientific Reports (Oct 2024)

Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators

  • Szymon Sniegula,
  • Robby Stoks,
  • Maria J. Golab

DOI
https://doi.org/10.1038/s41598-024-76057-x
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 17

Abstract

Read online

Abstract In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.

Keywords