Novel Epitope Mapping of African Swine Fever Virus pI215L Protein Using Monoclonal Antibodies
Yanni Gao,
Xiaolin Jiang,
Xing Yang,
Keshan Zhang,
Ping Jiang,
Juan Bai
Affiliations
Yanni Gao
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Xiaolin Jiang
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Xing Yang
State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730046, China
Keshan Zhang
State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730046, China
Ping Jiang
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Juan Bai
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
The African swine fever virus (ASFV) is one of the most important pathogens that causes huge damage to worldwide swine production. The pI215L protein is found within the virion and expressed at a high level in infected porcine alveolar macrophages (PAMs), indicating a possible role of pI215L protein in ASFV detection and surveillance. In the present study, female BALB/c mice (5–6-week-old) were immunized with rpI215L protein, and six hybridomas, 1C1, 2F6, 2F10, 3C8, 5E1 and 5B3, steadily secreted anti-pI215L monoclonal antibodies (mAbs). Among them, 1C4, 5E1, and 5B3 had the IgG1 isotype with a Lambda light chain, 2F10 and 3C8 had the IgG1 isotype with a Kappa light chain, and 2F6 had the IgG2a isotype with a Kappa light chain. Western blot showed a good reactivity of the six mAbs against ASFV. Eight truncated polypeptides were produced for epitope mapping. Two novel B cell epitopes, 67LTFTSEMWHPNIYS80 and 167IEYFKNAASN176, were identified by the mAbs. Further analysis revealed that 2F6 mAb could be widely used in ASFV surveillance and 5B3 mAb might serve as a tool in the distinguishment of different ASFV genotypes. This study provides tools of monoclonal antibodies for further study of I215L function and contributes to the development of serological diagnosis and vaccine research.