Mathematics (Nov 2024)

An Anonymous and Efficient Authentication Scheme with Conditional Privacy Preservation in Internet of Vehicles Networks

  • Chaeeon Kim,
  • DeokKyu Kwon,
  • Seunghwan Son,
  • Sungjin Yu,
  • Youngho Park

DOI
https://doi.org/10.3390/math12233756
Journal volume & issue
Vol. 12, no. 23
p. 3756

Abstract

Read online

The Internet of Vehicles (IoV) is an emerging technology that enables vehicles to communicate with their surroundings, provide convenient services, and enhance transportation systems. However, IoV networks can be vulnerable to security attacks because vehicles communicate with other IoV components through an open wireless channel. The recent related work suggested a two-factor-based lightweight authentication scheme for IoV networks. Unfortunately, we prove that the related work cannot prevent various security attacks, such as insider and ephemeral secret leakage (ESL) attacks, and fails to ensure perfect forward secrecy. To address these security weaknesses, we propose an anonymous and efficient authentication scheme with conditional privacy-preserving capabilities in IoV networks. The proposed scheme can ensure robustness against various security attacks and provide essential security features. The proposed scheme ensures conditional privacy to revoke malicious behavior in IoV networks. Moreover, our scheme uses only one-way hash functions and XOR operations, which are low-cost cryptographic operations suitable for IoV. We also prove the security of our scheme using the “Burrows–Abadi–Needham (BAN) logic”, “Real-or-Random (ROR) model”, and “Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation tool”. We evaluate and compare the performance and security features of the proposed scheme with existing methods. Consequently, our scheme provides improved security and efficiency and is suitable for practical IoV networks.

Keywords