Quickly diagnosing Bietti crystalline dystrophy with deep learning
Haihan Zhang,
Kai Zhang,
Jinyuan Wang,
Shicheng Yu,
Zhixi Li,
Shiyi Yin,
Jingyuan Zhu,
Wenbin Wei
Affiliations
Haihan Zhang
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
Kai Zhang
Chongqing Chang’an Industrial Group Co. Ltd, Chongqing, China
Jinyuan Wang
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; School of Clinical Medicine, Tsinghua University, Beijing, China
Shicheng Yu
Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
Zhixi Li
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
Shiyi Yin
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
Jingyuan Zhu
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
Wenbin Wei
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Corresponding author
Summary: Bietti crystalline dystrophy (BCD) is an autosomal recessive inherited retinal disease (IRD) and its early precise diagnosis is much challenging. This study aims to diagnose BCD and classify the clinical stage based on ultra-wide-field (UWF) color fundus photographs (CFPs) via deep learning (DL). All CFPs were labeled as BCD, retinitis pigmentosa (RP) or normal, and the BCD patients were further divided into three stages. DL models ResNeXt, Wide ResNet, and ResNeSt were developed, and model performance was evaluated using accuracy and confusion matrix. Then the diagnostic interpretability was verified by the heatmaps. The models achieved good classification results. Our study established the largest BCD database of Chinese population. We developed a quick diagnosing method for BCD and evaluated the potential efficacy of an automatic diagnosis and grading DL algorithm based on UWF fundus photography in a Chinese cohort of BCD patients.