PLoS ONE (Jan 2021)

A novel algorithm for 3-D visualization of electrogram duration for substrate-mapping in patients with ischemic heart disease and ventricular tachycardia.

  • Mustafa Masjedi,
  • Christiane Jungen,
  • Pawel Kuklik,
  • Fares-Alexander Alken,
  • Ann-Kathrin Kahle,
  • Niklas Klatt,
  • Katharina Scherschel,
  • Jürgen Lorenz,
  • Christian Meyer

DOI
https://doi.org/10.1371/journal.pone.0254683
Journal volume & issue
Vol. 16, no. 7
p. e0254683

Abstract

Read online

BackgroundMyocardial slow conduction is a cornerstone of ventricular tachycardia (VT). Prolonged electrogram (EGM) duration is a useful surrogate parameter and manual annotation of EGM characteristics are widely used during catheter-based ablation of the arrhythmogenic substrate. However, this remains time-consuming and prone to inter-operator variability. We aimed to develop an algorithm for 3-D visualization of EGM duration relative to the 17-segment American Heart Association model.MethodsTo calculate and visualize EGM duration, in sinus rhythm acquired high-density maps of patients with ischemic cardiomyopathy undergoing substrate-based VT ablation using a 64-mini polar basket-catheter with low noise of 0.01 mV were analyzed. Using a custom developed algorithm based on standard deviation and threshold, the relationship between EGM duration, endocardial voltage and ablation areas was studied by creating 17-segment 3-D models and 2-D polar plots.Results140,508 EGMs from 272 segments (n = 16 patients, 94% male, age: 66±2.4, ejection fraction: 31±2%) were studied and 3-D visualization of EGM duration was performed. Analysis of signal processing parameters revealed that a 40 ms sliding SD-window, 15% SD-threshold and >70 ms EGM duration cutoff was chosen based on diagnostic odds ratio of 12.77 to visualize rapidly prolonged EGM durations. EGMs > 70 ms matched to 99% of areas within dense scar (ConclusionThe novel algorithm allows rapid visualization of prolonged EGM durations. This may facilitate more objective characterization of arrhythmogenic substrate in patients with ischemic cardiomyopathy.