Research on Diffusible Signal Factor-Mediated Quorum Sensing in <i>Xanthomonas</i>: A Mini-Review
Yu-Mei Feng,
Zhou-Qing Long,
Hong-Mei Xiang,
Jun-Ning Ran,
Xiang Zhou,
Song Yang
Affiliations
Yu-Mei Feng
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Zhou-Qing Long
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Hong-Mei Xiang
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Jun-Ning Ran
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Xiang Zhou
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Song Yang
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
Xanthomonas spp. are important plant pathogens that seriously endanger crop yields and food security. RpfF is a key enzyme that is involved in the synthesis of diffusible signal factor (DSF) signals and predominates in the signaling pathway regulating quorum sensing (QS) in Xanthomonas. Currently, novel RpfF enzyme-based quorum sensing agents have been proposed as a promising strategy for the development of new pesticides. However, few reports are available that comprehensively summarize the progress in this field. Therefore, we provide a comprehensive review of the recent advances in DSF-mediated QS and recently reported inhibitors that are proposed as bactericide candidates to target the RpfF enzyme and control plant bacterial diseases.