Scientific Reports (Jul 2017)

A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17

  • Cinzia Giagulli,
  • Pasqualina D’Ursi,
  • Wangxiao He,
  • Simone Zorzan,
  • Francesca Caccuri,
  • Kristen Varney,
  • Alessandro Orro,
  • Stefania Marsico,
  • Benoît Otjacques,
  • Carlo Laudanna,
  • Luciano Milanesi,
  • Riccardo Dolcetti,
  • Simona Fiorentini,
  • Wuyuan Lu,
  • Arnaldo Caruso

DOI
https://doi.org/10.1038/s41598-017-06848-y
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Recent data highlight the presence, in HIV-1-seropositive patients with lymphoma, of p17 variants (vp17s) endowed with B-cell clonogenicity, suggesting a role of vp17s in lymphomagenesis. We investigated the mechanisms responsible for the functional disparity on B cells between a wild-type p17 (refp17) and a vp17 named S75X. Here, we show that a single Arginine (R) to Glycine (G) mutation at position 76 in the refp17 backbone (p17R76G), as in the S75X variant, is per se sufficient to confer a B-cell clonogenic potential to the viral protein and modulate, through activation of the PTEN/PI3K/Akt signaling pathway, different molecules involved in apoptosis inhibition (CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src, PAX2, MAPK8), cell cycle promotion and cancer progression (CDK1, CDK2, CDK8, CHEK1, CHEK2, GSK-3 beta, NPM, PAK1, PP2C-alpha). Moreover, the only R to G mutation at position 76 was found to strongly impact on protein folding and oligomerization by altering the hydrogen bond network. This generates a conformational shift in the p17 R76G mutant which enables a functional epitope(s), masked in refp17, to elicit B-cell growth-promoting signals after its interaction with a still unknown receptor(s). Our findings offer new opportunities to understand the molecular mechanisms accounting for the B-cell growth-promoting activity of vp17s.