Nanomaterials (Aug 2022)

Co<sub>3</sub>O<sub>4</sub> Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation

  • Yuntao Sun,
  • Can Wang,
  • Shengyao Qin,
  • Fengda Pan,
  • Yongyan Li,
  • Zhifeng Wang,
  • Chunling Qin

DOI
https://doi.org/10.3390/nano12162850
Journal volume & issue
Vol. 12, no. 16
p. 2850

Abstract

Read online

Designing a novel photocatalytic composite for the efficient degradation of organic dyes remains a serious challenge. Herein, the multi-layered Co3O4@NP-CuO photocatalyst with unique features, i.e., the self-supporting, hierarchical porous network as well as the construction of heterojunction between Co3O4 and CuO, are synthesized by dealloying-electrodeposition and subsequent thermal treatment techniques. It is found that the interwoven ultrathin Co3O4 nanopetals evenly grow on the nanoporous CuO network (Co3O4@NP-CuO). The three-dimensional (3D) hierarchical porous structure for the catalyst provides more surface area to act as active sites and facilitates the absorption of visible light in the photodegradation reaction. Compared with the commercial CuO and Co3O4 powders, the newly designed Co3O4@NP-CuO composite exhibits superior photodegradation performance for RhB. The enhanced performance is mainly due to the construction of heterojunction of Co3O4/CuO, greatly promoting the efficient carrier separation for photocatalysis. Furthermore, the possible photocatalytic mechanism is analyzed in detail. This work provides a promising strategy for the fabrication of a new controllable heterojunction to improve photocatalytic activity.

Keywords