Journal of Medical Physics (Jan 2007)

Evaluation of radiograph-based interstitial implant dosimetry on computed tomography images using dose volume indices for head and neck cancer

  • Upreti Ritu,
  • Dayananda S,
  • Bhalawat R,
  • Bedre Girish,
  • Deshpande D

Journal volume & issue
Vol. 32, no. 2
pp. 60 – 64

Abstract

Read online

Conventional radiograph-based implant dosimetry fails to correlate the spatial dose distribution on patient anatomy with lack in dosimetry quality. Though these limitations are overcome in computed tomography (CT)-based dosimetry, it requires an algorithm which can reconstruct catheters on the multi-planner CT images. In the absence of such algorithm, we proposed a technique in which the implanted geometry and dose distribution generated from orthogonal radiograph were mapped onto the CT data using coordinate transformation method. Radiograph-based implant dosimetry was generated for five head and neck cancer patients on Plato Sunrise treatment planning system. Dosimetry was geometrically optimized on volume, and dose was prescribed according to the natural prescription dose. The final dose distribution was retrospectively mapped onto the CT data set of the same patients using coordinate transformation method, which was verified in a phantom prior to patient study. Dosimetric outcomes were evaluated qualitatively by visualizing isodose distribution on CT images and quantitatively using the dose volume indices, which includes coverage index (CI), external volume index (EI), relative dose homogeneity index (HI), overdose volume index (OI) and conformal index (COIN). The accuracy of coordinate transformation was within ±1 mm in phantom and ±2 mm in patients. Qualitative evaluation of dosimetry on the CT images shows reasonably good coverage of target at the expense of excessive normal tissue irradiation. The mean (SD) values of CI, EI and HI were estimated to be 0.81 (0.039), 0.55 (0.174) and 0.65 (0.074) respectively. The maximum OI estimated was 0.06 (mean 0.04, SD = 0.015). Finally, the COIN computed for each patient ranged from 0.4 to 0.61 (mean 0.52, SD = 0.078). The proposed technique is feasible and accurate to implement even for the most complicated implant geometry. It allows the physicist and physician to evaluate the plan both qualitatively and quantitatively. Dose volume indices derived from CT data set are useful for evaluating the implant and comparing different brachytherapy plans. COIN index is an important tool to assess the target coverage and sparing of normal tissues in brachytherapy.

Keywords