npj Urban Sustainability (Feb 2024)
The emergence of urban heat traps and human mobility in 20 US cities
Abstract
Abstract Understanding the relationship between spatial structures of cities and environmental hazard exposures is essential for urban health and sustainability planning. However, a critical knowledge gap exists in terms of the extent to which socio-spatial networks shaped by human mobility exacerbate or alleviate urban heat exposures of populations in cities. In this study, we utilize location-based data to construct human mobility networks in twenty metropolitan areas in the U.S. The human mobility networks are analyzed in conjunction with the urban heat characteristics of spatial areas. We identify areas with high and low urban heat exposure and evaluate visitation patterns of populations residing in high and low urban heat areas to other spatial areas with similar and dissimilar urban heat exposure. The results reveal the presence of urban heat traps in the majority of the studied metropolitan areas, wherein populations residing in high-heat exposure areas primarily visited other high-heat exposure zones. Specifically, cities such as Los Angeles, Boston, and Chicago were particularly pronounced as urban heat traps. The results also show a small percentage of human mobility to produce urban heat escalation and heat escapes. The findings from this study provide a better understanding of urban heat exposure in cities based on patterns of human mobility. These findings contribute to a broader understanding of the intersection of human network dynamics and environmental hazard exposures in cities to inform more integrated urban design and planning to promote health and sustainability.