Crystals (May 2022)

Perturbed Angular Correlation Technique at ISOLDE/CERN Applied for Studies of Hydrogenated Titanium Dioxide (TiO<sub>2</sub>): Observation of Cd-H Pairs

  • Dmitry V. Zyabkin,
  • Juliana Schell,
  • João G. M. Correia,
  • Ulrich Vetter,
  • Peter Schaaf

DOI
https://doi.org/10.3390/cryst12060756
Journal volume & issue
Vol. 12, no. 6
p. 756

Abstract

Read online

Profound understanding of the local electronic and defect structure in semiconductors always plays a vital role in the further developing of applications of such materials. In the present work an investigation of the electronic structure in hydrogenated TiO2 (rutile) thin films is conducted by virtue of Time-Differential γ-γ Perturbed Angular Correlation spectroscopy (TDPAC or PAC) with 111mCd/Cd isotope, produced and implanted at ISOLDE/CERN. The measurements were performed at 581 K as a function of the temperature of the samples during hydrogenation. Despite the fact, that rutile single crystals usually show the presence of two local environments, when are studies with Cd/In isotopes, the current pristine thin films sample had a single electric field gradient. Upon various degrees of hydrogenation, Cd probe atoms showed underwent alterations, resulting in up to 3 different local surroundings, generally with high electric field gradients. Broad EFG distributions are likely due to randomly distributed point defects in the neighbourhood of Cd acceptors. Observed results suggest that hydrogenations performed at RT and 423 K are not able to promote unique defect configurations, while in the range of 473-573 K the formation of such configurations is observed. Therefore, one may assume that the formation of Cd-defect complexes (Cd-H pairs) is temperature enhanced. At higher levels of hydrogenation (663 K), the samples become partly amorphous that further hinders any atomistic studies with strong damped PAC spectra. Cd-H complexes seem to be stable up to annealing up to 581 K annealing. The obtained results give a deep insight into complex hydrogen defects, their interactions and bond formations with Cd acceptor.

Keywords