Sensors (Sep 2018)

Development of Organic-Inorganic Hybrid Optical Gas Sensors for the Non-Invasive Monitoring of Pathogenic Bacteria

  • Sumana Kladsomboon,
  • Chadinee Thippakorn,
  • Thara Seesaard

DOI
https://doi.org/10.3390/s18103189
Journal volume & issue
Vol. 18, no. 10
p. 3189

Abstract

Read online

Hybrid optical gas sensors, based on different organic and inorganic materials, are proposed in this paper, with the aim of using them as optical artificial nose systems. Three types of organic and inorganic dyes, namely zinc-porphyrin, manganese-porphyrin, and zinc-phthalocyanine, were used as gas sensing materials to fabricate a thin-film coating on glass substrates. The performance of the gas sensor was enhanced by a thermal treatment process. The optical absorption spectra and morphological structure of the sensing films were confirmed by UV-Vis spectrophotometer and atomic force microscope, respectively. The optical gas sensors were tested with various volatile compounds, such as acetic acid, acetone, ammonia, ethanol, ethyl acetate, and formaldehyde, which are commonly found to be released during the growth of bacteria. These sensors were used to detect and discriminate between the bacterial odors of three pathogenic species (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) grown in Luria-Bertani medium. Based on a pattern recognition (PARC) technique, we showed that the proposed hybrid optical gas sensors can discriminate among the three pathogenic bacterial odors and that the volatile organic compound (VOC) odor pattern of each bacterium was dependent on the phase of bacterial growth.

Keywords