Developmental Cognitive Neuroscience (Oct 2019)
Developing, mature, and unique functions of the child’s brain in reading and mathematics
Abstract
Cognitive development research shows that children use basic “child-unique” strategies for reading and mathematics. This suggests that children’s neural processes will differ qualitatively from those of adults during this developmental period. The goals of the current study were to 1) establish whether a within-subjects neural dissociation between reading and mathematics exists in early childhood as it does in adulthood, and 2) use a novel, developmental intersubject correlation method to test for “child-unique”, developing, and adult-like patterns of neural activation within those networks. Across multiple tasks, children’s reading and mathematics activity converged in prefrontal cortex, but dissociated in temporal and parietal cortices, showing similarities to the adult pattern of dissociation. “Child-unique” patterns of neural activity were observed in multiple regions, including the anterior temporal lobe and inferior frontal gyri, and showed “child-unique” profiles of functional connectivity to prefrontal cortex. This provides a new demonstration that “children are not just little adults” – the developing brain is not only quantitatively different from adults, it is also qualitatively different. Keywords: Mathematics, Reading, Natural viewing, fMRI, Early childhood