Journal of Sustainable Development of Transport and Logistics (Nov 2020)
Blending control of the trolleybus traction and brake drives to enhance the braking efficiency of a vehicle
Abstract
Widespread usage of emission free public transport is the preferred strategy in many cities to reduce a congestion and pollution from the road traffic. The trolleybus is a kind of urban public transport, i.e. a fully electric vehicle, which is considered as a promising tool to enhance the efficiency of public transport and to attain the goals of sustainable development and quality of city life. The operation control of service brake system and secondary brake system (the braking torque of traction electric motor) is realized with help of one pedal in the trolleybus. Thus, there are modes of the joint operation for these systems during the braking process. Authors focus on the development of rule-based algorithm for the blending control of traction electric motor and anti-lock braking system to enhance the overall braking efficiency of a vehicle. The mathematical model of the trolleybus braking dynamics was developed for this purpose. Test bench and ride tests on different road surfaces were carried out to determine the parameters of vehicle braking efficiency and to validate the developed mathematical model. The corresponding experimental data were used to analyse the efficiency of proposed rule-based strategy for the blending control of traction electric motor and anti-lock braking system of the trolleybus. As a result, the availability of proposed control algorithm is confirmed, which secures the required braking efficiency and provides a high braking stability of the vehicle.
Keywords