Atmospheric Chemistry and Physics (Sep 2019)

Analysis of total column CO<sub>2</sub> and CH<sub>4</sub> measurements in Berlin with WRF-GHG

  • X. Zhao,
  • J. Marshall,
  • S. Hachinger,
  • C. Gerbig,
  • M. Frey,
  • F. Hase,
  • J. Chen

DOI
https://doi.org/10.5194/acp-19-11279-2019
Journal volume & issue
Vol. 19
pp. 11279 – 11302

Abstract

Read online

Though they cover less than 3 % of the global land area, urban areas are responsible for over 70 % of the global greenhouse gas (GHG) emissions and contain 55 % of the global population. A quantitative tracking of GHG emissions in urban areas is therefore of great importance, with the aim of accurately assessing the amount of emissions and identifying the emission sources. The Weather Research and Forecasting model (WRF) coupled with GHG modules (WRF-GHG) developed for mesoscale atmospheric GHG transport can predict column-averaged abundances of CO2 and CH4 (XCO2 and XCH4). In this study, we use WRF-GHG to model the Berlin area at a high spatial resolution of 1 km. The simulated wind and concentration fields were compared with the measurements from a campaign performed around Berlin in 2014 (Hase et al., 2015). The measured and simulated wind fields mostly demonstrate good agreement. The simulated XCO2 shows quite similar trends with the measurement but with approximately 1 ppm bias, while a bias in the simulated XCH4 of around 2.7 % is found. The bias could potentially be the result of relatively high background concentrations, the errors at the tropopause height, etc. We find that an analysis using differential column methodology (DCM) works well for the XCH4 comparison, as corresponding background biases are then canceled out. From the tracer analysis, we find that the enhancement of XCH4 is highly dependent on human activities. The XCO2 enhancement in the vicinity of Berlin is dominated by anthropogenic behavior rather than biogenic activities. We conclude that DCM is an effective method for comparing models to observations independently of biases caused, e.g., by initial conditions. It allows us to use our high-resolution WRF-GHG model to detect and understand major sources of GHG emissions in urban areas.