Cellular Physiology and Biochemistry (Oct 2017)

N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression

  • Zhenyu Wang,
  • Jiali Leng,
  • Yuguang Zhao,
  • Dehai Yu,
  • Feng Xu,
  • Qingxu Song,
  • Zhigang Qu,
  • Xinming Zhuang,
  • Yi Liu

DOI
https://doi.org/10.1159/000484385
Journal volume & issue
Vol. 43, no. 6
pp. 2327 – 2337

Abstract

Read online

Background/Aims: Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Methods: Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. Results: The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. Conclusion: N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression.

Keywords