ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (May 2024)
Accuracy Assessment of UAV Photogrammetry System with RTK Measurements for Direct Georeferencing
Abstract
The direct georeferencing accuracy of unmanned aerial vehicle (UAV) images with real-time kinematic (RTK) measurements is a concerned topic in the community of photogrammetry. This study assesses the capabilities of a multi-rotor platform equipped with RTK technology, specifically a DJI Phantom 4 RTK UAV, for robust direct georeferencing. The UAV surveyed a square and a building at Wuhan University to assess the accuracy and spatial consistency of direct georeferencing in close-range photography. We tested checkpoint errors under various ground control points (GCPs) configurations. The results show that without GCP, an analysis of 71 spatially distributed checkpoints produced a root mean square error (RMSE) of 5.58 cm in the Z direction. This finding indicates that RTK-equipped UAVs can achieve acceptable error margins even without using GCPs, thereby fulfilling the precision requirements for large-scale mapping.