APL Photonics (Dec 2022)

Efficient chip-based optical parametric oscillators from 590 to 1150 nm

  • Jordan R. Stone,
  • Xiyuan Lu,
  • Gregory Moille,
  • Kartik Srinivasan

DOI
https://doi.org/10.1063/5.0117691
Journal volume & issue
Vol. 7, no. 12
pp. 121301 – 121301-6

Abstract

Read online

Optical parametric oscillators are widely used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to-signal conversion efficiencies typically less than 0.1%. Here, we demonstrate efficient optical parametric oscillators based on silicon nitride photonics that address frequencies between 260 (1150 nm) and 510 THz (590 nm). Pumping silicon nitride microrings near 385 THz (780 nm) yields monochromatic signal and idler waves with unprecedented output powers in this wavelength range. We estimate on-chip output powers (separately for the signal and idler) between 1 and 5 mW and conversion efficiencies reaching ≈15%. Underlying this improved performance is our development of pulley waveguides for broadband near-critical coupling, which exploits a fundamental connection between the waveguide-resonator coupling rate and conversion efficiency. Finally, we find that mode competition reduces conversion efficiency at high pump powers, thereby constraining the maximum realizable output power. Our work proves that optical parametric oscillators built with integrated photonics can produce useful amounts of visible laser light with high efficiency.