Biogeosciences (Mar 2020)

Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model

  • F. A. Gomez,
  • F. A. Gomez,
  • F. A. Gomez,
  • R. Wanninkhof,
  • L. Barbero,
  • L. Barbero,
  • S.-K. Lee,
  • F. J. Hernandez Jr.

DOI
https://doi.org/10.5194/bg-17-1685-2020
Journal volume & issue
Vol. 17
pp. 1685 – 1700

Abstract

Read online

Uncertainties in carbon chemistry variability still remain large in the Gulf of Mexico (GoM), as data gaps limit our ability to infer basin-wide patterns. Here we configure and validate a regional high-resolution ocean biogeochemical model for the GoM to describe seasonal patterns in surface pressure of CO2 (pCO2), aragonite saturation state (ΩAr), and sea–air CO2 flux. Model results indicate that seasonal changes in surface pCO2 are strongly controlled by temperature across most of the GoM basin, except in the vicinity of the Mississippi–Atchafalaya river system delta, where runoff largely controls dissolved inorganic carbon (DIC) and total alkalinity (TA) changes. Our model results also show that seasonal patterns of surface ΩAr are driven by seasonal changes in DIC and TA, and reinforced by the seasonal changes in temperature. Simulated sea–air CO2 fluxes are consistent with previous observation-based estimates that show CO2 uptake during winter–spring, and CO2 outgassing during summer–fall. Annually, our model indicates a basin-wide mean CO2 uptake of 0.35 molm-2yr-1, and a northern GoM shelf (< 200 m) uptake of 0.93 molm-2yr-1. The observation and model-derived patterns of surface pCO2 and CO2 fluxes show good correspondence; thus this study contributes to improved constraints of the carbon budget in the region.