Ecology and Evolution (Nov 2022)

The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics

  • Michela M. Johnson,
  • Davide Foffa,
  • Mark T. Young,
  • Stephen L. Brusatte

DOI
https://doi.org/10.1002/ece3.9484
Journal volume & issue
Vol. 12, no. 11
pp. n/a – n/a

Abstract

Read online

Abstract Throughout the Jurassic, a plethora of marine reptiles dominated ocean waters, including ichthyosaurs, plesiosaurs and thalattosuchian crocodylomorphs. These Jurassic ecosystems were characterized by high niche partitioning and spatial variation in dietary ecology. However, while the ecological diversity of many marine reptile lineages is well known, the overall ecological diversification of Teleosauroidea (one of the two major groups within thalattosuchian crocodylomorphs) has never been explored. Teleosauroids were previously deemed to have a morphologically conservative body plan; however, they were in actuality morphofunctionally more diverse than previously thought. Here we investigate the ecology and feeding specializations of teleosauroids, using morphological and functional cranio‐dental characteristics. We assembled the most comprehensive dataset to date of teleosauroid taxa (approximately 20 species) and ran a series of principal component analyses (PC) to categorize them into various feeding ecomorphotypes based on 17 dental characteristics (38 specimens) and 16 functionally significant mandibular characters (18 specimens). The results were examined in conjunction with a comprehensive thalattosuchian phylogeny (153 taxa and 502 characters) to evaluate macroevolutionary patterns and significant ecological shifts. Machimosaurids display a well‐developed ecological shift from: (1) slender, pointed tooth apices and an elongate gracile mandible; to (2) more robust, pointed teeth with a slightly deeper mandible; and finally, (3) rounded teeth and a deep‐set, shortened mandible with enlarged musculature. Overall, there is limited mandibular functional variability in teleosaurids and machimosaurids, despite differing cranial morphologies and habitat preferences in certain taxa. This suggests a narrow feeding ecological divide between teleosaurids and machimosaurids. Resource partitioning was primarily related to snout and skull length as well as habitat; only twice did teleosauroids manage to make a major evolutionary leap to feed distinctly differently, with only the derived machimosaurines successfully radiating into new feeding ecologies.

Keywords