Discrete Mathematics & Theoretical Computer Science (Jan 2013)
Descent sets for oscillating tableaux
Abstract
The descent set of an oscillating (or up-down) tableau is introduced. This descent set plays the same role in the representation theory of the symplectic groups as the descent set of a standard tableau plays in the representation theory of the general linear groups. In particular, we show that the descent set is preserved by Sundaram's correspondence. This gives a direct combinatorial interpretation of the branching rules for the defining representations of the symplectic groups; equivalently, for the Frobenius character of the action of a symmetric group on an isotypic subspace in a tensor power of the defining representation of a symplectic group.
Keywords