Applied Sciences (Aug 2024)
A Multi-Stage Automatic Method Based on a Combination of Fully Convolutional Networks for Cardiac Segmentation in Short-Axis MRI
Abstract
Magnetic resonance imaging (MRI) is a non-invasive technique used in cardiac diagnosis. Using it, specialists can measure the masses and volumes of the right ventricle (RV), left ventricular cavity (LVC), and myocardium (MYO). Segmenting these structures is an important step before this measurement. However, this process can be laborious and error-prone when done manually. This paper proposes a multi-stage method for cardiac segmentation in short-axis MRI based on fully convolutional networks (FCNs). This automatic method comprises three main stages: (1) the extraction of a region of interest (ROI); (2) MYO and LVC segmentation using a proposed FCN called EAIS-Net; and (3) the RV segmentation using another proposed FCN called IRAX-Net. The proposed method was tested with the ACDC and M&Ms datasets. The main evaluation metrics are end-diastolic (ED) and end-systolic (ES) Dice. For the ACDC dataset, the Dice results (ED and ES, respectively) are 0.960 and 0.904 for the LVC, 0.880 and 0.892 for the MYO, and 0.910 and 0.860 for the RV. For the M&Ms dataset, the ED and ES Dices are 0.861 and 0.805 for the LVC, 0.733 and 0.759 for the MYO, and 0.721 and 0.694 for the RV. These results confirm the feasibility of the proposed method.
Keywords