Symmetry (Jun 2024)
High Resilient Asymmetry and Anomaly Detection Based on Data Causality
Abstract
In the tunnel construction practice, multiple buildings’ tilt rate data are collected. In this study, data causality is defined to reflect the causal relation between the input and output of the building tilt rate detection data. Upon defining and calculating the data causality, a new high resilient causality detection (HiReCau) method is proposed for abnormal building tilt rate detection. A numerical case and another practical case are studied for validation purposes. The case study results show that the proposed HiReCau method can accurately detect high-causality data and low-causality data among the building tilt rate detection data and produces superior results compared with the direct adoption of a machine learning approach. Furthermore, the resilience of HiReCau is validated by investigations testing varied levels of additional low-causality data in the training dataset. Presently, HiReCau is limited to handling problems with a single output. Furthermore, only the back-propagation neural network (BPNN) is tested as the baseline model and there is also room to further expand the data size. The proposed approach is versatile and able to be adjusted to handle fault diagnosis and safety assessment problems in varied theoretical and engineering backgrounds.
Keywords