Нанотехнологии в строительстве (Apr 2024)

Increasing the radioshielding properties of construction materials in the microwave range

  • Daniil S. Podgorny,
  • Mikhail Y. Elistratkin,
  • Diana O. Bondarenko,
  • Valeria V. Strokova

DOI
https://doi.org/10.15828/2075-8545-2024-16-2-100-108
Journal volume & issue
Vol. 16, no. 2
pp. 100 – 108

Abstract

Read online

Introduction. The intensive development of technology in the modern world is accompanied by the origin of new types of manmade hazards, one of which is microwave radiation. Despite the considerable range of protective materials, not all of them are suitable for construction purposes. The main obstacle to their use is their high cost, and integrating them into the main types of wall construction materials would require significant changes to their production processes. The most practical and reasonable way to solve the issue is to introduce special additives into concretes and mortars traditionally used for the production of building products. The paper examines the effect of additives of fine-dispersed black carbon and aluminum powder in the composition of cement and gypsum matrices on radio shielding properties in the frequency range 1800–2800 MHz. Materials and methods. Black carbon powder was added to cement and gypsum paste in dosages of 0, 2.5, 5%, aluminum powder was added to gypsum paste in dosages of 0, 2.5, 5%. Superabsorbent polymers pre-saturated with water have been studied. Radio shielding properties have been studied on a designed experimental laboratory installation using a vector circuit analyzer NanoVNA. Results and discussion. The influence of black carbon and aluminum powder additives on the strength and microwave protective properties of gypsum and cement stone is considered. It is found that the addition of black carbon in an amount of up to 3–3.5% of the cement weight shows a neutral effect on the strength of cement stone, providing a decrease in the signal level of about 50% (–6 dB) observed in the ranges 1800–2100 MHz and 2300–2650 MHz, which makes this additive promising for solving the highlighted task. When additives are introduced into the gypsum matrix, the addition of black carbon reduces the radiation level to 60% (–8 dB), and aluminum powder to 69% (–10 dB) in a dosage of no more than 5% of the mass fraction of the binder on samples with a thickness of 3 cm. However, the additives considered have a noticeable negative effect on the strength characteristics of gypsum stone, which allows recommending the use of only black carbon in an amount of no more than 2.5% to obtain products that do not require high strength. Conclusion. The problems of creating construction materials to reduce the level of microwave radiation in the studied frequency range are outlined. Data have been obtained on increasing the shielding ability of cement and gypsum binders with the use of additives

Keywords