Heliyon (Mar 2024)

Multilayer perceptron and support vector regression models for feline parturition date prediction

  • Thanida Sananmuang,
  • Kanchanarat Mankong,
  • Kaj Chokeshaiusaha

Journal volume & issue
Vol. 10, no. 6
p. e27992

Abstract

Read online

A crucial challenge in feline obstetric care is the accurate prediction of the parturition date during late pregnancy. The classic simple linear regression (SLR) model, which employed the fetal biparietal diameter (BPD) as the single input feature, was frequently applied for such prediction with limited accuracy. Since Multilayer Perceptron (MLP) and Support Vector Regression (SVR) are now two of the most potent scientific regression models, this study, for the first time, introduced such models as the new promising tools for feline parturition date prediction. The following features were candidate inputs for our models: biparietal diameter (BPD), litter size, and maternal weight. We observed and compared the performance results for each model. As the best-performed model, MLP delivered the highest coefficient score (0.972 ± 0.006), lowest mean absolute error score (1.110 ± 0.060), and lowest mean squared error score (1.540 ± 0.141), respectively. For the first time in this study, BPD, litter size, and maternal weight were considered the essential features for the innovative MLP and SVR modeling. With the optimized model parameters and the described analytical platform, further verification of these advanced models in feline obstetric practices is feasible.

Keywords