Materials (Feb 2014)

The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100)

  • Mastura Shafinaz Zainal Abidin,
  • Tahsin Morshed,
  • Hironori Chikita,
  • Yuki Kinoshita,
  • Shunpei Muta,
  • Mohammad Anisuzzaman,
  • Jong-Hyeok Park,
  • Ryo Matsumura,
  • Mohamad Rusop Mahmood,
  • Taizoh Sadoh,
  • Abdul Manaf Hashim

DOI
https://doi.org/10.3390/ma7021409
Journal volume & issue
Vol. 7, no. 2
pp. 1409 – 1421

Abstract

Read online

The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

Keywords