Atmospheric Chemistry and Physics (Apr 2019)
Aqueous reactions of organic triplet excited states with atmospheric alkenes
Abstract
Triplet excited states of organic matter are formed when colored organic matter (i.e., brown carbon) absorbs light. While these “triplets” can be important photooxidants in atmospheric drops and particles (e.g., they rapidly oxidize phenols), very little is known about their reactivity toward many classes of organic compounds in the atmosphere. Here we measure the bimolecular rate constants of the triplet excited state of benzophenone (3BP∗), a model species, with 17 water-soluble C3–C6 alkenes that have either been found in the atmosphere or are reasonable surrogates for identified species. Measured rate constants (kALK+3BP∗) vary by a factor of 30 and are in the range of (0.24–7.5) ×109 M−1 s−1. Biogenic alkenes found in the atmosphere – e.g., cis-3-hexen-1-ol, cis-3-hexenyl acetate, and methyl jasmonate – react rapidly, with rate constants above 1×109 M−1 s−1. Rate constants depend on alkene characteristics such as the location of the double bond, stereochemistry, and alkyl substitution on the double bond. There is a reasonable correlation between kALK+3BP∗ and the calculated one-electron oxidation potential (OP) of the alkenes (R2=0.58); in contrast, rate constants are not correlated with bond dissociation enthalpies, bond dissociation free energies, or computed energy barriers for hydrogen abstraction. Using the OP relationship, we estimate aqueous rate constants for a number of unsaturated isoprene and limonene oxidation products with 3BP∗: values are in the range of (0.080–1.7) ×109 M−1 s−1, with generally faster values for limonene products. Rate constants with less reactive triplets, which are probably more environmentally relevant, are likely roughly 25 times slower. Using our predicted rate constants, along with values for other reactions from the literature, we conclude that triplets are probably minor oxidants for isoprene- and limonene-related compounds in cloudy or foggy atmospheres, except in cases in which the triplets are very reactive.