Polymers (Aug 2021)

Photoinduced and Classical Sol-Gel Synthesis: Spectral and Photophysical Behavior of Silica Matrix Doped by Novel Fluorescent Dye Based on Boron Difluoride Complex

  • Jameelah Al-Harby,
  • Haja Tar,
  • Sadeq M. Al-Hazmy

DOI
https://doi.org/10.3390/polym13162743
Journal volume & issue
Vol. 13, no. 16
p. 2743

Abstract

Read online

The boron difluoride complex is known as an extraordinary class of fluorescent dyes, which has attracted research interest because of its excellent properties. This article reports the optical properties such as absorption, fluorescence, molar absorptivity, and photo-physical parameters like dipole moment, and oscillator strength of new fluorescent organic dye based on boron difluoride complex 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA). The spectral characterization of the dye was measured in sol-gel glass, photosol-gel, and organic–inorganic matrices. The absorption and fluorescence properties of DBDMA in sol-gel glass matrices were compared with each other. Compared with the classical sol-gel, it was noticed that the photosol-gel matrix is the best one with immobilized DBDMA. In the latter, a large stokes shift was obtained (97 nm) and a high fluorescence quantum yield of 0.5. Special attention was paid to the addition of gold NPs into the hybrid material. The fluorescence emission intensity of the DBDMA with and without gold nanoparticles in different solid media is described, and that displayed organic–inorganic matrix behavior is the best host.

Keywords