Atmospheric Chemistry and Physics (May 2018)
Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations
- C. Orbe,
- C. Orbe,
- C. Orbe,
- C. Orbe,
- H. Yang,
- D. W. Waugh,
- G. Zeng,
- O. Morgenstern,
- D. E. Kinnison,
- J.-F. Lamarque,
- S. Tilmes,
- D. A. Plummer,
- J. F. Scinocca,
- B. Josse,
- V. Marecal,
- P. Jöckel,
- L. D. Oman,
- S. E. Strahan,
- S. E. Strahan,
- M. Deushi,
- T. Y. Tanaka,
- K. Yoshida,
- H. Akiyoshi,
- Y. Yamashita,
- Y. Yamashita,
- A. Stenke,
- L. Revell,
- L. Revell,
- T. Sukhodolov,
- T. Sukhodolov,
- E. Rozanov,
- E. Rozanov,
- G. Pitari,
- D. Visioni,
- K. A. Stone,
- K. A. Stone,
- K. A. Stone,
- R. Schofield,
- R. Schofield,
- A. Banerjee
Affiliations
- C. Orbe
- Goddard Earth Sciences Technology and Research (GESTAR), Columbia, MD, USA
- C. Orbe
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- C. Orbe
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- C. Orbe
- now at: NASA Goddard Institute for Space Studies, New York, NY, USA
- H. Yang
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- D. W. Waugh
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- G. Zeng
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- O. Morgenstern
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- D. E. Kinnison
- National Center for Atmospheric Research (NCAR), Atmospheric Chemistry Observations and Modeling (ACOM) Laboratory, Boulder, USA
- J.-F. Lamarque
- National Center for Atmospheric Research (NCAR), Atmospheric Chemistry Observations and Modeling (ACOM) Laboratory, Boulder, USA
- S. Tilmes
- National Center for Atmospheric Research (NCAR), Atmospheric Chemistry Observations and Modeling (ACOM) Laboratory, Boulder, USA
- D. A. Plummer
- Climate Research Branch, Environment and Climate Change Canada, Montreal, QC, Canada
- J. F. Scinocca
- Climate Research Branch, Environment and Climate Change Canada, Victoria, BC, Canada
- B. Josse
- Centre National de Recherches Météorologiques UMR 3589, Météo-France/CNRS, Toulouse, France
- V. Marecal
- Centre National de Recherches Météorologiques UMR 3589, Météo-France/CNRS, Toulouse, France
- P. Jöckel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
- L. D. Oman
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- S. E. Strahan
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- S. E. Strahan
- Universities Space Research Association, Columbia, MD, USA
- M. Deushi
- Meteorological Research Institute (MRI), Tsukuba, Japan
- T. Y. Tanaka
- Meteorological Research Institute (MRI), Tsukuba, Japan
- K. Yoshida
- Meteorological Research Institute (MRI), Tsukuba, Japan
- H. Akiyoshi
- Climate Modeling and Analysis Section, Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
- Y. Yamashita
- Climate Modeling and Analysis Section, Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
- Y. Yamashita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
- A. Stenke
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- L. Revell
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- L. Revell
- Bodeker Scientific, Christchurch, New Zealand
- T. Sukhodolov
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- T. Sukhodolov
- Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre, Davos, Switzerland
- E. Rozanov
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- E. Rozanov
- Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre, Davos, Switzerland
- G. Pitari
- Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy
- D. Visioni
- Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy
- K. A. Stone
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- K. A. Stone
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales 2052, Australia
- K. A. Stone
- now at: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
- R. Schofield
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- R. Schofield
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales 2052, Australia
- A. Banerjee
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
- DOI
- https://doi.org/10.5194/acp-18-7217-2018
- Journal volume & issue
-
Vol. 18
pp. 7217 – 7235
Abstract
Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry–Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.