Biomolecules (Jun 2023)

Brain Monoamine Dysfunction in Response to Predator Scent Stress Accompanies Stress-Susceptibility in Female Rats

  • Courtney S. Wilkinson,
  • Harrison L. Blount,
  • Marek Schwendt,
  • Lori A. Knackstedt

DOI
https://doi.org/10.3390/biom13071055
Journal volume & issue
Vol. 13, no. 7
p. 1055

Abstract

Read online

Post-traumatic stress disorder (PTSD) is prevalent in women; however, preclinical research on PTSD has predominantly been conducted in male animals. Using a predator scent stress (PSS) rodent model of PTSD, we sought to determine if stress-susceptible female rats show altered monoamine concentrations in brain regions associated with PTSD: the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and dorsal (dHIPP) and ventral (vHIPP) hippocampus. Female Sprague–Dawley rats were exposed to a single, 10-min PSS exposure and tested for persistent anhedonia, fear, and anxiety-like behavior over four weeks. Rats were phenotyped as stress-Susceptible based on sucrose consumption in the sucrose preference task and time spent in the open arms of the elevated plus maze. Brain tissue was collected, and norepinephrine, dopamine, serotonin, and their metabolites were quantified using high-performance liquid chromatography. Stress-susceptibility in female rats was associated with increased dopamine and serotonin turnover in the mPFC. Susceptibility was also associated with elevated dopamine turnover in the NAc and increased norepinephrine in the vHIPP. Our findings suggest that stress-susceptibility after a single stress exposure is associated with long-term effects on monoamine function in female rats. These data suggest interventions that decrease monoamine turnover, such as MAOIs, may be effective in the treatment of PTSD in women.

Keywords