Journal of Experimental & Clinical Cancer Research (Jun 2019)

NEO212 induces mitochondrial apoptosis and impairs autophagy flux in ovarian cancer

  • Xingguo Song,
  • Lisheng Liu,
  • Minghui Chang,
  • Xinran Geng,
  • Xingwu Wang,
  • Weijun Wang,
  • Thomas C. Chen,
  • Li Xie,
  • Xianrang Song

DOI
https://doi.org/10.1186/s13046-019-1249-1
Journal volume & issue
Vol. 38, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Temozolomide-perillyl alcohol conjugate (NEO212), a novel temozolomide (TMZ) analog, was previously reported to exert its anti-cancer effect in non-small cell lung cancer (NSCLC), and human nasopharyngeal carcinoma (NPC), etc.. In the current study, we intend to illuminate the potential anticancer property and the underly mechanisms of NEO212 in ovarian cancer cells. Methods The cytotoxicity of NEO212 was detected by MTT, colony formation analysis and xenograft model. The proteins involved in cell proliferation, DNA damage, autophagy and lysosomal function were detected by western blots; mitochondria, lysosome and autophagosome were visualized by TEM and/or immunofluorescence; Apoptosis, cell cycle analysis and mitochondrial transmembrane potential were detected by flow cytometry. TFEB translocation was detected by immunofluorescence and western blot. Results NEO212 has the potential anticancer property in ovarian cancer cells, as evidence from cell proliferation inhibition, G2/M arrest, DNA damage, xenograft, mitochondrial dysfunction and apoptosis. Importantly, we observed that although it induced significant accumulation of autophagosomes, NEO212 quenched GFP-LC3 degradation, down-regulated a series of lysosome related gene expression and blocked the autophagic flux, which significantly facilitated it induced apoptosis and was largely because it inhibited the nuclear translocation of transcription factor EB (EB). Conclusions NEO212 inhibited TFEB translocation, and impaired the lysosomal function, implying NEO212 might avoid from autophagy mediated chemo-resistance, thus proposing NEO212 as a potential therapeutic candidate for ovarian cancer.

Keywords