Advances in Mechanical Engineering (Mar 2021)

Effect of rare earth oxide CeO on the anodic bonding performance of PEG-based MEMS encapsulation materials

  • Chao Du,
  • Cuirong Liu,
  • Xu Yin,
  • Haocheng Zhao

DOI
https://doi.org/10.1177/16878140211007712
Journal volume & issue
Vol. 13

Abstract

Read online

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO 2 , using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO 2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO 2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO 2 . This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.