Applied Sciences (Mar 2023)
Research on Double-Arc Cutting Tool Design and Cutting Performance
Abstract
With the increasing complexity of the workpiece surfaces in aerospace and automotive molding and other areas, an increasing number of cutting tools with different shapes and performance have become necessary. A new kind of cutting tool is developed with a double-arc revolving surface at the tool’s end to improve the processing quality in numerical control milling, referred to as a double-arc cutting tool (DACT) in this paper. The parametric geometric model of the DACT is established. Three types of cutting-edge curves are proposed (a cutting edge with a constant helix angle, a cutting edge with a constant pitch, and an orthogonal spiral cutting edge). Corresponding numerical simulation results are also provided as graphical representations. A DACT is manufactured and tested to verify its feasibility. Finally, two contrast experiments are conducted to prove that DACT has a higher processing quality than a ball-end mill (BEM). The advantage of the DACT is verified, which provides a theoretical basis for higher quality machining. The parametric design and application research provides a new method and theoretical basis for other new types of cutting tools.
Keywords