IET Nanodielectrics (Dec 2023)
Research progress of intrinsic polymer dielectrics with high thermal conductivity
Abstract
Abstract Heat dissipation has become an important challenge and technical bottleneck for the rapid development of high‐frequency microelectronic devices and high‐voltage electrical equipment. Thus, there is a great urgent need for high‐performance intrinsically thermally conductive polymer (ITCP) to realise effective heat dissipation. In recent year, the ITCP has received extensive attention due to excellent overall performances and clear advantages over conventional heat conductive polymer composites. The thermal transport physics and its relation with the multiscale chain conformations in polymers with diverse morphologies are reviewed. Then, the current understanding of how the chemistry of polymers, multiscale chain morphologies and conformations would affect phonon transport and the resulting thermal conductivity (TC) in both amorphous and crystalline polymers to unveil the important chemistry‐structure‐property relationships is discussed and anaysed. The latest advances in engineering ITCP from oriented fibre to bulk amorphous states for a high TC are summarised. Lastly, the challenges, prospects and outlook of ITCP have been proposed. The authors anticipate that the present paper will spire more fundamental and applied research in the intrinsic polymer dielectrics field to advance scientific understanding and industrial applications.
Keywords