Remote Sensing (Dec 2021)
Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco
Abstract
Vegetation structure is a key component in assessing habitat quality for wildlife and carbon storage capacity of forests. Studies conducted at global scale demonstrate the increasing pressure of the agricultural frontier on tropical forest, endangering their continuity and biodiversity within. The Paraguayan Chaco has been identified as one of the regions with the highest rate of deforestation in South America. Uninterrupted deforestation activities over the last 30 years have resulted in the loss of 27% of its original cover. The present study focuses on the assessment of vegetation structure characteristics for the complete Paraguayan Chaco by fusing Sentinel-1, -2 and novel spaceborne Light Detection and Ranging (LiDAR) samples from the Global Ecosystem Dynamics Investigation (GEDI). The large study area (240,000 km2) calls for a workflow in the cloud computing environment of Google Earth Engine (GEE) which efficiently processes the multi-temporal and multi-sensor data sets for extrapolation in a tile-based random forest (RF) regression model. GEDI-derived attributes of vegetation structure are available since December 2019, opening novel research perspectives to assess vegetation structure composition in remote areas and at large-scale. Therefore, the combination of global mapping missions, such as Landsat and Sentinel, are predestined to be combined with GEDI data, in order to identify priority areas for nature conservation. Nevertheless, a comprehensive assessment of the vegetation structure of the Paraguayan Chaco has not been conducted yet. For that reason, the present methodology was developed to generate the first high-resolution maps (10 m) of canopy height, total canopy cover, Plant-Area-Index and Foliage-Height-Diversity-Index. The complex ecosystems of the Paraguayan Chaco ranging from arid to humid climates can be described by canopy height values from 1.8 to 17.6 m and canopy covers from sparse to dense (total canopy cover: 0 to 78.1%). Model accuracy according to median R2 amounts to 64.0% for canopy height, 61.4% for total canopy cover, 50.6% for Plant-Area-Index and 48.0% for Foliage-Height-Diversity-Index. The generated maps of vegetation structure should promote environmental-sound land use and conservation strategies in the Paraguayan Chaco, to meet the challenges of expanding agricultural fields and increasing demand of cattle ranching products, which are dominant drivers of tropical forest loss.
Keywords