Energies (Apr 2024)

The Feasibility Study of In Situ Conversion of Oil Shale Based on Calcium-Oxide-Based Composite Materia Hydration Exothermic Reaction

  • Shiwei Ma,
  • Shouding Li,
  • Zhaobin Zhang,
  • Tao Xu,
  • Bo Zheng,
  • Yanzhi Hu,
  • Guanfang Li,
  • Xiao Li

DOI
https://doi.org/10.3390/en17081798
Journal volume & issue
Vol. 17, no. 8
p. 1798

Abstract

Read online

Oil shale, as a vast potential resource, is considered an important alternative energy source, and its effective development and economic utilization are of significant importance in alleviating the contradiction between energy supply and demand. Presently, the in situ conversion technology for oil shale has gained significant global attention, with numerous extraction methods undergoing active research and development. One of these methods is the in situ conversion of oil shale based on the hydration reaction of calcium-oxide-based composite material (CaO-CM). This approach harnesses the heat produced by the reaction between CaO-CM and water as a heat source for the pyrolysis of oil shale. This paper conducted experiments to assess the feasibility of temperature associated with this method. The feasibility study mainly includes two aspects: First, it is necessary to investigate whether the temperature generated by the hydration reaction of CaO-CM can meet the temperature requirements for the pyrolysis of oil shale. Through pyrolysis experiments of Xinjiang oil shale, the minimum temperature required for oil shale pyrolysis was determined to be 330 °C. High-temperature and high-pressure reaction vessels were employed to explore the temperature generated by the hydration reaction of CaO-CM. The results show that with the increase in environment pressure, environment temperature, and reaction mass, the maximum temperature generated by the hydration reaction of CaO-CM also increases (reach 455.5 °C), meeting the temperature requirements for the pyrolysis of oil shale. Second, the study evaluates whether the hydration reaction of CaO-CM can induce pyrolysis hydrocarbons of the oil shale. Through the pyrolysis experiments of oil shale based on the hydration reaction of CaO-CM, the changes in the content of pyrolysis hydrocarbons (S2) in oil shale before and after pyrolysis are measured. The results show that under 10 MPa pressure, the content of pyrolysis hydrocarbons in the oil shale decreased from 40.96 mg/g to 0.08 mg/g after pyrolysis. This confirms the feasibility of the temperature conditions for the in situ conversion of oil shale based on the hydration reaction of CaO-CM.

Keywords