PeerJ (Oct 2021)

Land-use change influence soil quality parameters at an ecologically fragile area of YongDeng County of Gansu Province, China

  • Samuel Adingo,
  • Jie-Ru Yu,
  • Liu Xuelu,
  • Sun Jing,
  • Xiaodan Li,
  • Zhang Xiaoning

DOI
https://doi.org/10.7717/peerj.12246
Journal volume & issue
Vol. 9
p. e12246

Abstract

Read online Read online

Dry ecosystems, despite their relative levels of aridity, are very diverse, and play a vital role in the livelihoods of many dryland inhabitants. It is therefore critical to investigate the relationship between land-use change and soil quality parameters to offer a scientific basis for optimizing land-use planning and improving soil quality status in dry ecosystems and ecologically vulnerable areas. This study, therefore, analyzed the physicochemical properties of soils in five different land-use types namely farmland, abandoned farmland, natural grassland, artificial lemon forest, and poplar woodland at YongDeng County. The soil quality status of the aforementioned land-use types was also evaluated through Principal component analysis. The results revealed that abandoned farmland and natural grassland recorded the highest average values of soil coarse particles of 24.0% and 23.4% respectively compared to the other land-use types. The highest average value (46.1%) of fine soil particles was recorded in poplar woodland followed by natural grassland (36.6%) and the average value of very fine soil particles was higher in farmland (40.8%) and artificial lemon woodland (38.3%) than in the other land-use types. The average value of clayey particles was highest in farmland (11.1%), followed by artificial lemon woodland (9.3%), and abandoned farmland (6.5%), then poplar woodland which recorded an average value of (4.2%). The average values of Soil water content, soil pH, soil electrical conductivity, and soil total nitrogen content were significantly higher in farmland compared to the other land-use types. Soil organic carbon content was significantly higher in abandoned farmland at (P abandoned farmland > 0 > grassland > lemon woodland > poplar woodland. In the study area, the soil quality of farmland that has been finely managed and naturally restored to grassland following abandonment is superior, whereas the soil quality of natural grassland, artificial lemon woodland, and poplar forest land is substandard. The comprehensive analysis of soil quality demonstrates that conservation tillage and fine management of water-irrigated farmland, as well as the natural conversion of abandoned farmland to grassland, can significantly improve the soil quality of sandy soils, reduce water and soil loss, increase fertility, and gradually improve regional ecological environmental conditions.

Keywords