Nauka ta progres transportu (Jan 2014)
ELECTRODYNAMICS OF TRANSMISSION AND LOSSES OF POWER IN THE DEVICES OF ELECTRIC TRACTION SYSTEMS
Abstract
Purpose. Theoretical justification of the "field" approach (based on electromagnetic field) to the transmission and losses of power in the devices of traction power supply systems and electric rolling stock. Methodology. The methods of electromagnetic field theory and, in particular, the theory and practice of electromagnetic energy transmission based on the concept of the Poynting vector and elements of the theory of propagation, reflection and refraction of plane electromagnetic waves were used. Findings. Theoretical studies of electromagnetic energy transmission from the traction substation to the electric rolling stock through dielectric (air) surrounding traction network: between the contact wire and the rail were carried out. It is proposed strategic designing "squat" (low) types of electric rolling stock. The components of electric energy flow through the roof of electric rolling stock and its frontal part of the body were estimated. This allows reliable etimating active power losses in electric traction system. To compensate the reactive power consumed by electric rolling stock, which is conditioned by standing waves, it is proposed (for extinction of the the last) to develop and put in front of electric rolling stock the layer of particular environment with the necessary parameters. Originality. The "field" principle of the power transmission analysis and its losses arising in electric traction system was first proposed. The laws of motion of electromagnetic energy flows through the roof and the frontal part of the body of electric rolling stock were established. Practical value. An expression of the absolute value of the Poynting vector in the points of dielectric (air) between the contact wire and the rail was obtained. This allows assessing the highest density of energy, which is transferred to the time unit and predicting the main dimensions of the unit of electric rolling stock. The energy indices of the roof of electric rolling stock, through which penetrate the electromagnetic waves during energy transferring were numerically evaluated.